In this study, we proposed the truncated total least squares dynamic mode decomposition (T-TLS DMD) algorithm, which can perform DMD analysis of noisy data. By adding truncation regularization to the conventional TLS DMD algorithm, T-TLS DMD improves the stability of the computation while maintaining the accuracy of TLS DMD. The effectiveness of the proposed method was evaluated by the analysis of the wake behind a cylinder and pressure-sensitive paint (PSP) data for the buffet cell phenomenon. The results showed the importance of regularization in the DMD algorithm. With respect to the eigenvalues, T-TLS DMD was less affected by noise, and accurate eigenvalues could be obtained stably, whereas the eigenvalues of TLS and subspace DMD varied greatly due to noise. It was also observed that the eigenvalues of the standard and exact DMD had the problem of shifting to the damping side, as reported in previous studies. With respect to eigenvectors, T-TLS and exact DMD captured the characteristic flow patterns clearly even in the presence of noise, whereas TLS and subspace DMD were not able to capture them clearly due to noise.


翻译:在这次研究中,我们建议了截断的完全最小方形动态模式分解(T-TLS DMD)算法(T-TLS DMD)算法(T-TLS DMD)算法(T-TLS DMD),该算法可以对噪音进行DMD分析。T-TLS DMD在常规的 TLS DMD算法中增加了脱轨规范化,提高了计算稳定性,同时保持了TLS DMD的准确性。根据对气瓶和对压力敏感的油漆数据后面的撞击分析,我们评估了拟议方法的有效性。结果显示DMD算法的正规化十分重要。关于电子数值,T-TLS DMDDD的特性流模式受到噪音的影响较小,而且精确的偏差值可以得到精准,而TLS和次空间DMD的精度因噪音而大不相同。据观察,标准与精确DMD的精准值有问题。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
76+阅读 · 2021年3月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员