This paper addresses the 3D point cloud reconstruction and 3D pose estimation of the human hand from a single RGB image. To that end, we present a novel pipeline for local and global point cloud reconstruction using a 3D hand template while learning a latent representation for pose estimation. To demonstrate our method, we introduce a new multi-view hand posture dataset to obtain complete 3D point clouds of the hand in the real world. Experiments on our newly proposed dataset and four public benchmarks demonstrate the model's strengths. Our method outperforms competitors in 3D pose estimation while reconstructing realistic-looking complete 3D hand point clouds.
翻译:本文论述3D点云层重建,3D代表从一个 RGB 图像中估算人的手。 为此,我们用一个 3D 手模版展示了一条新的地方和全球点云层重建管道,同时学习了潜在代表面来估算。为了展示我们的方法,我们引入了一个新的多视角手势数据集,以便在现实世界中获取完整的3D点云层。我们新提议的数据集实验和四个公共基准证明了模型的优势。我们的方法在3D 中优于竞争者,在重建符合现实的3D 指点云的同时,也呈现了对3D 的估算。