Accurate and fast 3D object detection from point clouds is a key task in autonomous driving. Existing one-stage 3D object detection methods can achieve real-time performance, however, they are dominated by anchor-based detectors which are inefficient and require additional post-processing. In this paper, we eliminate anchors and model an object as a single point--the center point of its bounding box. Based on the center point, we propose an anchor-free CenterNet3D network that performs 3D object detection without anchors. Our CenterNet3D uses keypoint estimation to find center points and directly regresses 3D bounding boxes. However, because inherent sparsity of point clouds, 3D object center points are likely to be in empty space which makes it difficult to estimate accurate boundaries. To solve this issue, we propose an extra corner attention module to enforce the CNN backbone to pay more attention to object boundaries. Besides, considering that one-stage detectors suffer from the discordance between the predicted bounding boxes and corresponding classification confidences, we develop an efficient keypoint-sensitive warping operation to align the confidences to the predicted bounding boxes. Our proposed CenterNet3D is non-maximum suppression free which makes it more efficient and simpler. We evaluate CenterNet3D on the widely used KITTI dataset and more challenging nuScenes dataset. Our method outperforms all state-of-the-art anchor-based one-stage methods and has comparable performance to two-stage methods as well. It has an inference speed of 20 FPS and achieves the best speed and accuracy trade-off. Our source code will be released at https://github.com/wangguojun2018/CenterNet3d.
翻译:从点云中准确和快速检测 3D 对象在点云中是一个关键任务。 现有的 一级 3D 对象检测方法可以实现实时性能。 但是, 它们被基于锚的探测器所主宰, 这些探测器效率低, 需要额外的后处理 。 在本文中, 我们删除锚并模拟一个对象, 作为其捆绑框的一个单一点点 。 基于中心点, 我们提议一个无锚的 CentreNet3D 网络网络网络, 执行3D 对象检测, 而不设锚。 我们的 CentreNet3D 使用关键点估计来找到中心点, 直接回溯 3D 捆绑框。 但是, 由于点云的内在偏差, 3D 对象中心中心中心点的中点可能位于空空空空间, 这使得很难估计准确的边界。 为了解决这个问题, 我们提议了一个额外的角心注意模块, 来强化CNN的骨架对目标边界的注意。 此外, 考虑到一个阶段探测器会因预测的捆绑框和相应的分类信任而受到影响, 我们开发一个高效的关键点敏感的战斗操作, 将使其与一个可比较具有可比性的 KNet3 。 我们的拟议 CentnetNet3 工具将使得我们使用了一个更精确的运行中的数据控制方法。