A wide class of Bayesian models involve unidentifiable random matrices that display rotational ambiguity, with the Gaussian factor model being a typical example. A rich variety of Markov chain Monte Carlo (MCMC) algorithms have been proposed for sampling the parameters of these models. However, without identifiability constraints, reliable posterior summaries of the parameters cannot be obtained directly from the MCMC output. As an alternative, we propose a computationally efficient post-processing algorithm that allows inference on non-identifiable parameters. We first orthogonalize the posterior samples using Varimax and then tackle label and sign switching with a greedy matching algorithm. We compare the performance and computational complexity with other methods using a simulation study and chemical exposures data. The algorithm implementation is available in the infinitefactor R package on CRAN.
翻译:一系列广泛的贝叶斯模型涉及无法辨别的随机矩阵,显示旋转的模糊性,高斯系数模型是一个典型的例子。为对这些模型的参数进行取样,已经提议了多种丰富的Markov连锁 Monte Carlo(MCMCC)算法。然而,如果没有可辨识性的限制,无法直接从MCMC输出中获取可靠的参数后继摘要。作为替代办法,我们提议一种计算高效的后处理算法,可以推断不可辨识的参数。我们首先将利用Varimax的后端样本进行对称,然后用贪婪的匹配算法处理标签和签名转换。我们用模拟研究和化学暴露数据将性能和计算复杂性与其他方法进行比较。算法的实施可以在CRAN上的无限法R包中找到。