Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative logics, also referred to as $d$-logics. Unlike logics based on the topological closure operator, $d$-logics have not previously been studied in the framework of dynamical systems, which are pairs $(X,f)$ consisting of a topological space $X$ equipped with a continuous function $f\colon X\to X$. We introduce the logics $\bf{wK4C}$, $\bf{K4C}$ and $\bf{GLC}$ and show that they all have the finite Kripke model property and are sound and complete with respect to the $d$-semantics in this dynamical setting. In particular, we prove that $\bf{wK4C}$ is the $d$-logic of all dynamic topological systems, $\bf{K4C}$ is the $d$-logic of all $T_D$ dynamic topological systems, and $\bf{GLC}$ is the $d$-logic of all dynamic topological systems based on a scattered space. We also prove a general result for the case where $f$ is a homeomorphism, which in particular yields soundness and completeness for the corresponding systems $\bf{wK4H}$, $\bf{K4H}$ and $\bf{GLH}$. The main contribution of this work is the foundation of a general proof method for finite model property and completeness of dynamic topological $d$-logics. Furthermore, our result for $\bf{GLC}$ constitutes the first step towards a proof of completeness for the trimodal topo-temporal language with respect to a finite axiomatisation -- something known to be impossible over the class of all spaces.
翻译:以 Cantor 衍生符运算符为基础的模式逻辑的地形语义表达式 { 以 Cantor 衍生符运算符 } 产生衍生逻辑, 也被称为 $d$ 。 与基于 postic 关闭操作员的逻辑不同, $d$- logic 先前没有在动态系统的框架内研究过, 这些系统是一对( X, f) 美元, 包含一个连续函数的表层空间 $X$X美元 。 我们引入了 $\ bf{wK4C} 美元, $\ b{ K4C} 美元 和 $b{GLC} 美元。 所有的美元T_ D$ 动态表层系统, $\ blickrc 模型的美元- florformocial=lational_ gral_ gral_ gral_ roupal_ roupal_ roupal_l_ 美元, 美元, 美元 美元, 美元 美元 美元=xl_cal_ 美元 美元 美元 美元 美元, 美元 美元 美元, 美元 美元 美元 美元=xl_ 美元, 美元 美元 美元 美元= 美元 美元 美元 美元 美元= 美元 美元 美元= 美元 美元 美元 美元 美元= 美元= 美元 美元 美元 美元 美元 美元, 美元, 美元, 美元, 美元 美元 美元 美元 美元= 美元= 美元 美元 美元= 美元 美元= 美元 美元= 美元 美元 美元 美元 美元 美元,我们证明,我们证明,我们 美元,我们证明, 我们__xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxlxlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx