Millimeter wave radar can measure distances, directions, and Doppler velocity for objects in harsh conditions such as fog. The 4D imaging radar with both vertical and horizontal data resembling an image can also measure objects' height. Previous studies have used 3D radars for ego-motion estimation. But few methods leveraged the rich data of imaging radars, and they usually omitted the mapping aspect, thus leading to inferior odometry accuracy. This paper presents a real-time imaging radar inertial odometry and mapping method, iRIOM, based on the submap concept. To deal with moving objects and multipath reflections, we use the graduated non-convexity method to robustly and efficiently estimate ego-velocity from a single scan. To measure the agreement between sparse non-repetitive radar scan points and submap points, the distribution-to-multi-distribution distance for matches is adopted. The ego-velocity, scan-to-submap matches are fused with the 6D inertial data by an iterative extended Kalman filter to get the platform's 3D position and orientation. A loop closure module is also developed to curb the odometry module's drift. To our knowledge, iRIOM based on the two modules is the first 4D radar inertial SLAM system. On our and third-party data, we show iRIOM's favorable odometry accuracy and mapping consistency against the FastLIO-SLAM and the EKFRIO. Also, the ablation study reveal the benefit of inertial data versus the constant velocity model, and scan-to-submap matching versus scan-to-scan matching.
翻译:毫米波雷达可以测量恶劣条件下(如雾)物体的距离、方向和多普勒速度。具有垂直和水平数据类似图像的4D成像雷达也可以测量物体的高度。以前的研究使用3D雷达进行自主运动估计。但很少有方法利用成像雷达的丰富数据,它们通常忽略了映射方面,从而导致自主运动估计的精度较低。本文提出了一种基于子图概念的实时成像雷达惯性里程计和建图方法iRIOM。为了处理移动物体和多路径反射,我们使用渐进非凸方法从单个扫描中鲁棒并高效地估计自我速度。为了衡量稀疏非重复雷达扫描点和子图点之间的一致性,采用分布到多分布距离来匹配。通过迭代扩展卡尔曼滤波器,将自我速度、扫描到子图匹配与6D惯性数据融合,获得平台的3D位置和方向。还开发了环路闭合模块来抑制自主运动估计模块的漂移。据我们所知,基于两个模块的iRIOM是第一个4D雷达惯性SLAM系统。在我们和第三方的数据上,我们展示了iRIOM相对于FastLIO-SLAM和EKFRIO的优越自主运动估计精度和映射一致性。此外,消融研究揭示了惯性数据相对于恒定速度模型的好处,以及扫描到子图匹配相对于扫描到扫描匹配的好处。