X-ray coronary angiography (XCA) is used to assess coronary artery disease and provides valuable information on lesion morphology and severity. However, XCA images are 2D and therefore limit visualisation of the vessel. 3D reconstruction of coronary vessels is possible using multiple views, however lumen border detection in current software is performed manually resulting in limited reproducibility and slow processing time. In this study we propose 3DAngioNet, a novel deep learning (DL) system that enables rapid 3D vessel mesh reconstruction using 2D XCA images from two views. Our approach learns a coarse mesh template using an EfficientB3-UNet segmentation network and projection geometries, and deforms it using a graph convolutional network. 3DAngioNet outperforms similar automated reconstruction methods, offers improved efficiency, and enables modelling of bifurcated vessels. The approach was validated using state-of-the-art software verified by skilled cardiologists.
翻译:使用XCA(XCA)评估冠心动动脉病,并提供有关腐蚀形态和严重程度的宝贵信息,然而,XCA图像为2D,因此限制了船只的可视化。 3D对冠心血管进行重建是可能的,使用多种观点是可能的,然而,目前软件中的润滑边界探测是人工进行的,造成有限的再复制和缓慢的处理时间。在这项研究中,我们建议3DAngioNet(3DAGioNet)是一个新型的深层学习系统,利用两个观点的2D XCA图像进行3D船只网形的快速重建。我们的方法是利用高效B3-UNet分解网络和投影地理模型学习粗微网模模,并利用图象变形网络进行变形。 3DANDGioNet(3DANDGioNet)将类似的自动重建方法成形,提供更高的效率,并使得两造船建模成为模型。该方法经过熟练的心脏学家核实的先进软件验证。</s>