This paper addresses the problem of learning abstractions that boost robot planning performance while providing strong guarantees of reliability. Although state-of-the-art hierarchical robot planning algorithms allow robots to efficiently compute long-horizon motion plans for achieving user desired tasks, these methods typically rely upon environment-dependent state and action abstractions that need to be hand-designed by experts. We present a new approach for bootstrapping the entire hierarchical planning process. It shows how abstract states and actions for new environments can be computed automatically using the critical regions predicted by a deep neural-network with an auto-generated robot specific architecture. It uses the learned abstractions in a novel multi-source bi-directional hierarchical robot planning algorithm that is sound and probabilistically complete. An extensive empirical evaluation on twenty different settings using holonomic and non-holonomic robots shows that (a) the learned abstractions provide the information necessary for efficient multi-source hierarchical planning; and that (b) this approach of learning abstraction and planning outperforms state-of-the-art baselines by nearly a factor of ten in terms of planning time on test environments not seen during training.
翻译:本文探讨了学习抽象学的问题,这些抽象学能够提高机器人规划性能,同时又能提供可靠的有力保障。尽管最先进的等级机器人规划算法允许机器人高效率地计算长视距运动计划,以完成用户期望的任务,但这些方法通常依赖于需要由专家亲手设计的环境依赖状态和行动抽象学。我们提出了对整个等级规划过程进行制导的新方法。它展示了如何利用由具有自动产生的机器人特定结构的深层神经网络预测的关键区域,自动地计算出新环境的抽象状态和行动。它使用新颖的多源双向双向级机器人规划算法,这种算法是健全和概率完整的。对20个不同环境进行的广泛经验评估显示,(a) 学到的抽象学为高效的多源等级规划提供了必要的信息;以及(b) 这种学习抽象学和规划超出尖端基准的方法,在规划培训期间没有看到的环境方面几乎有10个时间。