We demonstrate the superior capabilities of the recently proposed Lorentz quantum computer (LQC) compared to conventional quantum computers. We introduce an associated computational complexity class, bounded-error Lorentz quantum polynomial-time (BLQP), and prove that the complexity class ${\text P}^{\sharp \text{P}}$ is contained within BLQP. We present LQC algorithms that solve in polynomial time the problem of maximum independent set and the problems in the classes of NP, co-NP, PH (polynomial hierarchy), PP (probabilistic polynomial-time), and ${\text P}^{\sharp \text{P}}$. We show that the quantum computing with postselection proposed by Aaronson can be simulated efficiently by LQC, but not vice versa.
翻译:暂无翻译