We investigate critical points of eigencurves of bivariate matrix pencils $A+\lambda B +\mu C$. Points $(\lambda,\mu)$ for which $\det(A+\lambda B+\mu C)=0$ form algebraic curves in $\mathbb C^2$ and we focus on points where $\mu'(\lambda)=0$. Such points are referred to as zero-group-velocity (ZGV) points, following terminology from engineering applications. We provide a general theory for the ZGV points and show that they form a subset (with equality in the generic case) of the 2D points $(\lambda_0,\mu_0)$, where $\lambda_0$ is a multiple eigenvalue of the pencil $(A+\mu_0 C)+\lambda B$, or, equivalently, there exist nonzero $x$ and $y$ such that $(A+\lambda_0 B+\mu_0 C)x=0$, $y^H(A+\lambda_0 B+\mu_0 C)=0$, and $y^HBx=0$. We introduce three numerical methods for computing 2D and ZGV points. The first method calculates all 2D (ZGV) points from the eigenvalues of a related singular two-parameter eigenvalue problem. The second method employs a projected regular two-parameter eigenvalue problem to compute either all eigenvalues or only a subset of eigenvalues close to a given target. The third approach is a locally convergent Gauss--Newton-type method that computes a single 2D point from an inital approximation, the later can be provided for all 2D points via the method of fixed relative distance by Jarlebring, Kvaal, and Michiels. In our numerical examples we use these methods to compute 2D-eigenvalues, solve double eigenvalue problems, determine ZGV points of a parameter-dependent quadratic eigenvalue problem, evaluate the distance to instability of a stable matrix, and find critical points of eigencurves of a two-parameter Sturm-Liouville problem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员