At the heart of causal structure learning from observational data lies a deceivingly simple question: given two statistically dependent random variables, which one has a causal effect on the other? This is impossible to answer using statistical dependence testing alone and requires that we make additional assumptions. We propose several fast and simple criteria for distinguishing cause and effect in pairs of discrete or continuous random variables. The intuition behind them is that predicting the effect variable using the cause variable should be `simpler' than the reverse -- different notions of `simplicity' giving rise to different criteria. We demonstrate the accuracy of the criteria on synthetic data generated under a broad family of causal mechanisms and types of noise.
翻译:从观测数据中学习因果结构的核心是一个欺骗性的简单问题:给两个在统计上依赖的随机变量,一个对另一个有因果关系?单靠统计依赖性测试是无法回答的,要求我们作出额外假设。我们提出了若干快速和简单的标准,以区分不同或连续随机变量的因果关系。其背后的直觉是,使用因果变量预测效应变量的“简单度”应该比反向的“简单度”——不同的“不简单性”概念产生不同的标准。我们展示了在一系列广泛的因果机制和噪音类型下产生的合成数据标准的准确性。