It is known that the membership in a given reproducing kernel Hilbert space (RKHS) of the samples of a Gaussian process $X$ is controlled by a certain nuclear dominance condition. However, it is less clear how to identify a "small" set of functions (not necessarily a vector space) that contains the samples. This article presents a general approach for identifying such sets. We use scaled RKHSs, which can be viewed as a generalisation of Hilbert scales, to define the sample support set as the largest set which is contained in every element of full measure under the law of $X$ in the $\sigma$-algebra induced by the collection of scaled RKHS. This potentially non-measurable set is then shown to consist of those functions that can be expanded in terms of an orthonormal basis of the RKHS of the covariance kernel of $X$ and have their squared basis coefficients bounded away from zero and infinity, a result suggested by the Karhunen-Lo\`{e}ve theorem.


翻译:已知某个复制核心Hilbert空间(RKHS)的标本由特定核支配地位条件控制,但不清楚如何确定包含样品的“小型”功能组(不一定是矢量空间),本文章为确定这类组别提供了一个一般方法。我们使用可视为对Hilbert尺度的概括的按比例规模的RKHS,将样品支持组确定为最大数据集,根据法律,在按比例收集的RKHS所引出的全部计量值$x$的每个要素中,该数据集包含在最大要素中。这一潜在不可计量的数据集由这些功能组成,这些功能可以以0.X美元共振核心的RKHS的正态基础为基础加以扩展,并将它们的正方基系数从零值和宽度上绑开,这是Karhunen-Lo ⁇ eev theorem建议的结果。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
4+阅读 · 2021年4月13日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员