Knowledge about the own pose is key for all mobile robot applications. Thus pose estimation is part of the core functionalities of mobile robots. Over the last two decades, LiDAR scanners have become the standard sensor for robot localization and mapping. This article provides an overview of recent progress and advancements in LiDAR-based global localization. We begin by formulating the problem and exploring the application scope. We then present a review of the methodology, including recent advancements in several topics, such as maps, descriptor extraction, and consistency checks. The contents of the article are organized under three themes. The first theme concerns the combination of global place retrieval and local pose estimation. The second theme is upgrading single-shot measurements to sequential ones for sequential global localization. Finally, the third theme focuses on extending single-robot global localization to cross-robot localization in multi-robot systems. We conclude the survey with a discussion of open challenges and promising directions in global LiDAR localization. To our best knowledge, this is the first comprehensive survey on global LiDAR localization for mobile robots.


翻译:摘要:对自身姿态的认知对于所有移动机器人应用程序都至关重要。因此,姿态估计是移动机器人的核心功能之一。在过去的二十年中,LiDAR 扫描仪已成为机器人定位和制图的标准传感器。本文概述了基于 LiDAR 的全局定位的最新进展和进步。我们从制定问题和探索应用范围开始。然后介绍方法论的综述,包括地图、描述符提取和一致性检查等多个主题的最新进展。文章的内容分为三个主题。第一个主题涉及全局位置检索和局部姿态估计的组合。第二个主题是将单次测量升级为顺序测量,以进行顺序全局定位。最后,第三个主题集中讨论将单个机器人的全局定位扩展至多机器人系统中的跨机器人定位。我们总结了全球 LiDAR 定位的挑战和有前途的方向,并进行讨论。据我们所知,这是关于移动机器人全球 LiDAR 定位的首篇综述。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【资源】2019年计算机视觉综述论文汇聚
专知
36+阅读 · 2019年11月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
69+阅读 · 2022年6月30日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
15+阅读 · 2021年12月22日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【资源】2019年计算机视觉综述论文汇聚
专知
36+阅读 · 2019年11月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员