【导读】本文整理了2019年计算机视觉方面的综述论文,包含目标检测、图像分割(含语义/实例分割)、目标跟踪、医学图像分割、显著性目标检测、行为识别、深度估计等。可以使读者对相关领域有一个系统的了解。很适合初学者以及相关领域的研究人员。
目标检测
1. Imbalance Problems in Object Detection: A Reviewintro: under review at TPAMI
arXiv: https://arxiv.org/abs/1909.00169
2. Recent Advances in Deep Learning for Object Detectionintro: From 2013 (OverFeat) to 2019 (DetNAS)
arXiv: https://arxiv.org/abs/1908.03673
3. A Survey of Deep Learning-based Object Detectionintro:From Fast R-CNN to NAS-FPN
arXiv: https://arxiv.org/abs/1907.09408
4. Object Detection in 20 Years: A Surveyintro:This work has been submitted to the IEEE TPAMI for possible publication
arXiv: https://arxiv.org/abs/1905.05055
5. 目标检测更多论文详见:https://github.com/amusi/awesome-object-detection
图像分割
1. Deep Semantic Segmentation of Natural and Medical Images: A Reviewintro
从 FCN(2014) 到 Auto-DeepLab(2019),本综述共含179篇语义分割和医学图像分割参考文献
arXiv: https://arxiv.org/abs/1910.07655
2. Understanding Deep Learning Techniques for Image Segmentationintro
本综述介绍了从2013年到2019年,主流的30多种分割算法(含语义/实例分割),50多种数据集,共计224篇参考文献
arXiv: https://arxiv.org/abs/1907.06119
目标跟踪
1. A Review of Visual Trackers and Analysis of its Application to Mobile Robotintro
本目标跟踪综述共含185篇参考文献!从传统方法到最新的深度学习网络
arXiv: https://arxiv.org/abs/1910.09761
2. Deep Learning in Video Multi-Object Tracking: A Surveyintro
38页目标跟踪综述,含30多种主流算法,共计174篇参考文献
arXiv: https://arxiv.org/abs/1907.12740
超分辨率
1. A Deep Journey into Super-resolution: A survey
arXiv: https://arxiv.org/abs/1904.07523
2. Deep Learning for Image Super-resolution: A Survey
arXiv: https://arxiv.org/abs/1902.06068
医学图像分割
1. Deep learning for cardiac image segmentation: A reviewintro
本医学图像分割综述从FCN(2014)到Dense U-net(2019),超过250篇的参考文献(论文中光画图的工作量就超级大)
arXiv: https://arxiv.org/abs/1911.03723
2. Machine Learning Techniques for Biomedical Image Segmentation: An Overview of Technical Aspects and Introduction to State-of-Art Applications
arXiv: https://arxiv.org/abs/1911.02521
显著性目标检测
1. Salient Object Detection in the Deep Learning Era: An In-Depth Survey
arXiv: https://arxiv.org/abs/1904.09146
github: https://github.com/wenguanwang/SODsurvey
行为识别
1. Spatio-temporal Action Recognition: A Survey
arXiv: https://arxiv.org/abs/1901.09403
深度估计
1. Monocular Depth Estimation: A Survey
arXiv: https://arxiv.org/abs/1901.09402
地址连接:
https://github.com/FranxYao/Deep-Generative-Models-for-Natural-Language-Processing