What do humans do when confronted with a common challenge: we know where we want to go but we are not yet sure the best way to get there, or even if we can. This is the problem posed to agents during spatial navigation and pathfinding, and its solution may give us clues about the more abstract domain of planning in general. In this work, we model pathfinding behavior in a continuous, explicitly exploratory paradigm. In our task, participants (and agents) must coordinate both visual exploration and navigation within a partially observable environment. Our contribution has three primary components: 1) an analysis of behavioral data from 81 human participants in a novel pathfinding paradigm conducted as an online experiment, 2) a proposal to model prospective mental simulation during navigation as particle filtering, and 3) an instantiation of this proposal in a computational agent. We show that our model, Active Dynamical Prospection, demonstrates similar patterns of map solution rate, path selection, and trial duration, as well as attentional behavior (at both aggregate and individual levels) when compared with data from human participants. We also find that both distal attention and delay prior to first move (both potential correlates of prospective simulation) are predictive of task performance.
翻译:面对共同的挑战,人类会做什么? 我们知道我们想去哪里,但我们还不确定到达那里的最佳方法,甚至我们能够去。这是空间导航和路由探测过程中给代理人造成的问题,其解决方案可能给我们关于总体规划更抽象领域的线索。在这项工作中,我们以连续的、明确的探索性范式来模拟路透行为。在我们的任务中,参与者(和代理人)必须在一个部分可见的环境中协调视觉探索和导航。我们的贡献有三个主要组成部分:1)分析81名人类参与者的行为数据,在作为在线实验进行的一个新的路由调查模式中,分析81名参与者的行为数据;2)在作为粒子过滤的导航过程中模拟未来精神模拟建议;3)在计算剂中即刻录这项提议。我们表明,我们的模型,即动态探索,展示了相似的地图解决方案率、路径选择和试验持续时间模式,以及与人类参与者的数据相比,关注行为(在总体和个人层面),以及关注行为(在总体和个人层面),我们还发现,在第一次移动之前的注意力和延迟(两个潜在关联性)是预测业绩。