What do humans do when confronted with a common challenge: we know where we want to go but we are not yet sure the best way to get there, or even if we can. This is the problem posed to agents during spatial navigation and pathfinding, and its solution may give us clues about the more abstract domain of planning in general. In this work, we model pathfinding behavior in a continuous, explicitly exploratory paradigm. In our task, participants (and agents) must coordinate both visual exploration and navigation within a partially observable environment. Our contribution has three primary components: 1) an analysis of behavioral data from 81 human participants in a novel pathfinding paradigm conducted as an online experiment, 2) a proposal to model prospective mental simulation during navigation as particle filtering, and 3) an instantiation of this proposal in a computational agent. We show that our model, Active Dynamical Prospection, demonstrates similar patterns of map solution rate, path selection, and trial duration, as well as attentional behavior (at both aggregate and individual levels) when compared with data from human participants. We also find that both distal attention and delay prior to first move (both potential correlates of prospective simulation) are predictive of task performance.


翻译:面对共同的挑战,人类会做什么? 我们知道我们想去哪里,但我们还不确定到达那里的最佳方法,甚至我们能够去。这是空间导航和路由探测过程中给代理人造成的问题,其解决方案可能给我们关于总体规划更抽象领域的线索。在这项工作中,我们以连续的、明确的探索性范式来模拟路透行为。在我们的任务中,参与者(和代理人)必须在一个部分可见的环境中协调视觉探索和导航。我们的贡献有三个主要组成部分:1)分析81名人类参与者的行为数据,在作为在线实验进行的一个新的路由调查模式中,分析81名参与者的行为数据;2)在作为粒子过滤的导航过程中模拟未来精神模拟建议;3)在计算剂中即刻录这项提议。我们表明,我们的模型,即动态探索,展示了相似的地图解决方案率、路径选择和试验持续时间模式,以及与人类参与者的数据相比,关注行为(在总体和个人层面),以及关注行为(在总体和个人层面),我们还发现,在第一次移动之前的注意力和延迟(两个潜在关联性)是预测业绩。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
6+阅读 · 2020年12月8日
VIP会员
相关VIP内容
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员