We present a novel discontinuous Galerkin finite element method for numerical simulations of the rotating thermal shallow water equations in complex geometries using curvilinear meshes, with arbitrary accuracy. We derive an entropy functional which is convex, and which must be preserved in order to preserve model stability at the discrete level. The numerical method is provably entropy stable and conserves mass, buoyancy, vorticity, and energy. This is achieved by using novel entropy stable numerical fluxes, summation-by-parts principle, and splitting the pressure and convection operators so that we can circumvent the use of chain rule at the discrete level. Numerical simulations on a cubed sphere mesh are presented to verify the theoretical results. The numerical experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilisation.
翻译:暂无翻译