Scientific topics, claims and resources are increasingly debated as part of online discourse, where prominent examples include discourse related to COVID-19 or climate change. This has led to both significant societal impact and increased interest in scientific online discourse from various disciplines. For instance, communication studies aim at a deeper understanding of biases, quality or spreading pattern of scientific information whereas computational methods have been proposed to extract, classify or verify scientific claims using NLP and IR techniques. However, research across disciplines currently suffers from both a lack of robust definitions of the various forms of science-relatedness as well as appropriate ground truth data for distinguishing them. In this work, we contribute (a) an annotation framework and corresponding definitions for different forms of scientific relatedness of online discourse in Tweets, (b) an expert-annotated dataset of 1261 tweets obtained through our labeling framework reaching an average Fleiss Kappa $\kappa$ of 0.63, (c) a multi-label classifier trained on our data able to detect science-relatedness with 89% F1 and also able to detect distinct forms of scientific knowledge (claims, references). With this work we aim to lay the foundation for developing and evaluating robust methods for analysing science as part of large-scale online discourse.
翻译:科学专题、主张和资源日益成为在线讨论的一部分,其中突出的例子包括与COVID-19或气候变化有关的讨论,从而产生了巨大的社会影响和对不同学科的科学在线讨论的兴趣,例如,交流研究旨在更深入地了解科学信息的偏见、质量或传播模式,同时提出计算方法,利用NLP和IR技术提取、分类或核实科学索赔。然而,目前,不同学科的研究既缺乏对各种形式的科学相关性的可靠定义,也缺乏适当的地面真象数据加以区分。在这项工作中,我们为Tweets在线讨论不同形式的科学相关性提供了说明框架和相应的定义(声明、参考)。 (b) 通过我们的标签框架获得的1261条推文的专家附加说明数据集,平均达到0.63美元。 (c) 多个标签分类师受过培训,我们的数据能够检测89%的F1与科学相关关系,并且能够探测不同形式的科学知识(声明、参考文献)。我们这样做的目的是为大规模科学讨论奠定基础,并进行大规模在线分析。