We present a generic and trend-aware curriculum learning approach for graph neural networks. It extends existing approaches by incorporating sample-level loss trends to better discriminate easier from harder samples and schedule them for training. The model effectively integrates textual and structural information for relation extraction in text graphs. Experimental results show that the model provides robust estimations of sample difficulty and shows sizable improvement over the state-of-the-art approaches across several datasets.
翻译:我们为图表神经网络提供了一种通用和具有趋势意识的课程学习方法,通过纳入样本水平损失趋势来扩大现有方法,以便从较难的样本中更好地区分损失趋势,并将之安排用于培训。模型有效地将用于关系提取的文本和结构信息纳入文字图中。实验结果表明,模型提供了对样本难度的可靠估计,并表明在若干数据集中比最先进的方法有相当大的改进。