While there is an abundance of popular writing targeted to podcast creators on how to speak in ways that engage their listeners, there has been little data-driven analysis of podcasts that relates linguistic style with listener engagement. In this paper, we investigate how various factors -- vocabulary diversity, distinctiveness, emotion, and syntax, among others -- correlate with engagement, based on analysis of the creators' written descriptions and transcripts of the audio. We build models with different textual representations, and show that the identified features are highly predictive of engagement. Our analysis tests popular wisdom about stylistic elements in high-engagement podcasts, corroborating some aspects, and adding new perspectives on others.
翻译:虽然针对播客创作者的大量流行著作是针对如何以让听众参与的方式发言的,但对播客的语种与听众参与相联系的播客很少进行数据驱动分析。 在本文中,我们调查各种因素 -- -- 词汇多样性、独特性、情感和语法等 -- -- 如何与参与相联系,这些因素基于对创作者书面描述和录音记录的分析。我们建立有不同文字表述的模型,并显示所查明的特征高度预测参与。我们的分析测试了高接触播客中关于文体元素的流行智慧,证实了某些方面,并增加了关于其他方面的新观点。