Background: Gaussian mixture modeling is a fundamental tool in clustering, as well as discriminant analysis and semiparametric density estimation. However, estimating the optimal model for any given number of components is an NP-hard problem, and estimating the number of components is in some respects an even harder problem. Findings: In R, a popular package called mclust addresses both of these problems. However, Python has lacked such a package. We therefore introduce AutoGMM, a Python algorithm for automatic Gaussian mixture modeling, and its hierarchical version, HGMM. AutoGMM builds upon scikit-learn's AgglomerativeClustering and GaussianMixture classes, with certain modifications to make the results more stable. Empirically, on several different applications, AutoGMM performs approximately as well as mclust, and sometimes better. Conclusions: AutoMM, a freely available Python package, enables efficient Gaussian mixture modeling by automatically selecting the initialization, number of clusters and covariance constraints.


翻译:: 高斯混合建模是集群的基本工具,也是对不同成分进行分析和半参数密度估计的基本工具。 但是, 估计任何特定数量的成分的最佳模型是一个NP硬问题, 估计组件的数量在某些方面甚至是一个更困难的问题。 结果 : 在 R 中, 流行的称为 mlult 的包包解决了这两个问题。 但是, Python 缺乏这样的包。 因此, 我们引入了AutoGMM, 自动高斯混合建模的Python算法及其等级版本, HGMM。 AutoGMMM 以Scikit- Learn 的集聚性结晶和高斯混合类为基础, 并进行某些修改以使结果更加稳定。 在多个不同的应用中, AutoGMMM 的演练大致是封闭性的,有时更好。 结论是: AutomM, 一个自由提供的 Python 包, 通过自动选择初始化、 集体数量和耐受约束的组合, 使高斯混合能够进行高效的模型建模。

0
下载
关闭预览

相关内容

【CHI2021】可解释人工智能导论
专知会员服务
120+阅读 · 2021年5月25日
【干货书】Python高级数据科学分析,424页pdf
专知会员服务
116+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
R语言实现聚类kmeans
R语言中文社区
3+阅读 · 2019年2月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2019年4月19日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
R语言实现聚类kmeans
R语言中文社区
3+阅读 · 2019年2月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员