Model comparison is the cornerstone of theoretical progress in psychological research. Common practice overwhelmingly relies on tools that evaluate competing models by balancing in-sample descriptive adequacy against model flexibility, with modern approaches advocating the use of marginal likelihood for hierarchical cognitive models. Cross-validation is another popular approach but its implementation has remained out of reach for cognitive models evaluated in a Bayesian hierarchical framework, with the major hurdle being prohibitive computational cost. To address this issue, we develop novel algorithms that make variational Bayes (VB) inference for hierarchical models feasible and computationally efficient for complex cognitive models of substantive theoretical interest. It is well known that VB produces good estimates of the first moments of the parameters which gives good predictive densities estimates. We thus develop a novel VB algorithm with Bayesian prediction as a tool to perform model comparison by cross-validation, which we refer to as CVVB. In particular, the CVVB can be used as a model screening device that quickly identifies bad models. We demonstrate the utility of CVVB by revisiting a classic question in decision making research: what latent components of processing drive the ubiquitous speed-accuracy tradeoff? We demonstrate that CVVB strongly agrees with model comparison via marginal likelihood yet achieves the outcome in much less time. Our approach brings cross-validation within reach of theoretically important psychological models, and makes it feasible to compare much larger families of hierarchically specified cognitive models than has previously been possible.


翻译:模式比较是心理研究理论进步的基石。 常见做法压倒性地依赖一些工具,这些工具通过在模拟描述性充分性与模型灵活性之间取得平衡,来评价相互竞争的模式,同时采用现代方法,倡导使用等级认知模型的边缘可能性。交叉校验是另一种受欢迎的方法,但在巴伊西亚等级框架内评价的认知模型方面,其实施仍然遥遥无期,主要障碍是令人难以接受的计算成本。为了解决这一问题,我们开发了新的算法,使等级模型的变换性贝耶斯(VB)推论变得可行,而且对于具有实质性理论兴趣的复杂认知模型而言具有计算效率。众所周知,VB对参数的最初时刻提出了良好的估计,这些参数提供了良好的预测性密度估计。因此,我们开发了一种新的VB算法,将巴耶西亚预测作为一种工具,用来进行相互比较模型比较,我们称之为CVVB。 特别是,CVVB可以用作一种快速识别坏模式的模型。我们通过重新审视一个典型的决策研究问题,表明CVB的效用是:处理中的隐性组成部分如何推动我们通过边际速度分析结果,而我们不太容易地取得一致。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
专知会员服务
38+阅读 · 2020年9月6日
【ST2020硬核课】深度学习即统计学习,50页ppt
专知会员服务
63+阅读 · 2020年8月17日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月1日
Arxiv
4+阅读 · 2021年10月19日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员