We introduce Multiresolution Deep Implicit Functions (MDIF), a hierarchical representation that can recover fine geometry detail, while being able to perform global operations such as shape completion. Our model represents a complex 3D shape with a hierarchy of latent grids, which can be decoded into different levels of detail and also achieve better accuracy. For shape completion, we propose latent grid dropout to simulate partial data in the latent space and therefore defer the completing functionality to the decoder side. This along with our multires design significantly improves the shape completion quality under decoder-only latent optimization. To the best of our knowledge, MDIF is the first deep implicit function model that can at the same time (1) represent different levels of detail and allow progressive decoding; (2) support both encoder-decoder inference and decoder-only latent optimization, and fulfill multiple applications; (3) perform detailed decoder-only shape completion. Experiments demonstrate its superior performance against prior art in various 3D reconstruction tasks.
翻译:我们引入了多分辨率深隐性功能(MDIF), 这是一种等级代表, 可以恢复精细的几何细节, 同时能够执行形状完成等全球操作。 我们的模型代表着一种复杂的三维形状, 其潜伏网格的层次分层, 可以解码到不同的详细程度, 并且实现更好的准确性。 为了完成形状, 我们提议隐含网格的退出, 以模拟潜伏空间中的部分数据, 从而将完成功能推迟到解码器侧。 这与我们的多功能设计一起, 大大提高了解码器唯一潜在优化下的形状完成质量。 根据我们的知识, MDIF是第一个深层隐含功能模型, 能够同时 (1) 代表不同的详细程度, 并允许渐进解码; (2) 支持编码器解码器的推断和仅为潜在优化, 并完成多个应用程序; (3) 进行详细的解码器只完成形状。 实验显示它在各种 3D 重建任务中比以往的艺术表现优。