The source number identification is an essential step in direction-of-arrival (DOA) estimation. Existing methods may provide a wrong source number due to inferior statistical properties (in low SNR or limited snapshots) or modeling errors (caused by relaxing sparse penalties), especially in impulsive noise. To address this issue, we propose a novel idea of simultaneous source number identification and DOA estimation. We formulate a multiobjective off-grid DOA estimation model to realize this idea, by which the source number can be automatically identified together with DOA estimation. In particular, the source number is properly exploited by the $l_0$ norm of impinging signals without relaxations, guaranteeing accuracy. Furthermore, we design a multiobjective bilevel evolutionary algorithm to solve the proposed model. The source number identification and sparse recovery are simultaneously optimized at the on-grid (lower) level. A forward search strategy is developed to further refine the grid at the off-grid (upper) level. This strategy does not need linear approximations and can eliminate the off-grid gap with low computational complexity. Simulation results demonstrate the outperformance of our method in terms of source number and root mean square error.
翻译:为了解决这一问题,我们提出了一个同时识别源码和估算DOA的新想法。我们制定了一个多目标离网DOA估算模型,以便实现这一想法,根据这一模型,源数可以与DOA估算一起自动识别。特别是,由于低统计属性(低SNR或有限的快照)或模型错误(由于放松微弱的处罚而导致的)或模型错误(特别是冲动噪音),现有方法可能会提供错误的源数。为了解决这个问题,我们提出了一个同时识别源码和数字估算的新想法。我们制定了一个多目标离网DOA估算模型,以便实现这一想法,从而源数可以与DOA估算一起自动识别。特别是,源数被不松懈地插入信号的0.0美元标准适当利用,从而保证准确性。此外,我们设计了一个多目标双级演进算法来解决拟议的模型。在电网(低电网)层面同时优化了源码识别和稀少恢复工作。我们开发了前方搜索战略,以进一步改进离网(顶级)一级的网格。这一战略不需要线近,并且能够以低的计算复杂性消除离网外差距差距。模拟结果显示我们方法在源码和根根错误方面的表现。