Shape restrictions have played a central role in economics as both testable implications of theory and sufficient conditions for obtaining informative counterfactual predictions. In this paper we provide a general procedure for inference under shape restrictions in identified and partially identified models defined by conditional moment restrictions. Our test statistics and proposed inference methods are based on the minimum of the generalized method of moments (GMM) objective function with and without shape restrictions. Uniformly valid critical values are obtained through a bootstrap procedure that approximates a subset of the true local parameter space. In an empirical analysis of the effect of childbearing on female labor supply, we show that employing shape restrictions in linear instrumental variables (IV) models can lead to shorter confidence regions for both local and average treatment effects. Other applications we discuss include inference for the variability of quantile IV treatment effects and for bounds on average equivalent variation in a demand model with general heterogeneity. We find in Monte Carlo examples that the critical values are conservatively accurate and that tests about objects of interest have good power relative to unrestricted GMM.
翻译:形状限制在经济学中起着核心作用,因为它既是理论的可检验影响,也是获得信息反事实预测的充分条件的可检验影响。在本文件中,我们提供了一个一般程序,用于在有条件时刻限制所定义的确定模型和部分确定模型的形状限制下进行推断;我们的试验统计数据和拟议的推断方法基于有和没有形状限制的一般瞬间方法客观功能的最小值;统一有效的临界值是通过一个靴子捕捉程序获得的,该程序接近于真实的当地参数空间的一部分。在对生育对女性劳动力供应的影响进行的实验分析中,我们表明,在线性工具变量(IV)模型中采用形状限制可以缩短对当地和平均治疗效果的信心区域。我们讨论的其他应用包括四分位处理效果的变异性以及一般异性需求模型中平均等值的界限。我们在蒙特卡洛的事例中发现,关键值是保守的准确性,而关于利益对象的测试与不受限制的GM具有良好的能量。