Recent studies have demonstrated the effectiveness of the combination of machine learning and logical reasoning in inventing advanced artificial intelligence technologies. One-step abductive multi-target learning (OSAMTL), an approach that only combines machine learning and logical reasoning in a one-step balanced way, has as well shown its effectiveness in handling complex noisy labels of a single noisy sample in medical histopathology whole slide image analysis (MHWSIA). However, OSAMTL is not suitable for the situation where diverse noisy samples (DiNS) are provided for a learning task. In this paper, giving definition of DiNS, we propose one-step abductive multi-target learning with DiNS (OSAMTL-DiNS) to expand the original OSAMTL to handle complex noisy labels of DiNS. Applying OSAMTL-DiNS to tumour segmentation for breast cancer in MHWSIA, we show that OSAMTL-DiNS is able to enable various state-of-the-art approaches for learning from noisy labels to achieve more rational predictions.
翻译:最近的研究表明,在发明先进的人工智能技术时,机器学习和逻辑推理相结合是有效的。 单步绑架多目标学习(OSAMTL)只是将机器学习和逻辑推理以一步平衡的方式结合起来,在医学组织病理学整体图象分析(MHWSIA)中非常吵的单一样本的复杂噪音标签方面,也充分显示了它的有效性。然而,OSAMTL不适合提供多种噪音样本用于学习任务的情况。在本文中,我们给出了DINS的定义,我们建议与DINS(OSAMTL-DINS)一起,扩大原OSAMTL的单步绑架多目标学习,以处理DINS的复杂噪音标签。在MHWSIA应用OSAMTL-DINS进行乳腺癌肿瘤分解,我们表明,OSAMTL-DINS能够让各种最先进的方法从噪音标签学习,从而实现更合理的预测。