Modeling interaction dynamics to generate robot trajectories that enable a robot to adapt and react to a human's actions and intentions is critical for efficient and effective collaborative Human-Robot Interactions (HRI). Learning from Demonstration (LfD) methods from Human-Human Interactions (HHI) have shown promising results, especially when coupled with representation learning techniques. However, such methods for learning HRI either do not scale well to high dimensional data or cannot accurately adapt to changing via-poses of the interacting partner. We propose Multimodal Interactive Latent Dynamics (MILD), a method that couples deep representation learning and probabilistic machine learning to address the problem of two-party physical HRIs. We learn the interaction dynamics from demonstrations, using Hidden Semi-Markov Models (HSMMs) to model the joint distribution of the interacting agents in the latent space of a Variational Autoencoder (VAE). Our experimental evaluations for learning HRI from HHI demonstrations show that MILD effectively captures the multimodality in the latent representations of HRI tasks, allowing us to decode the varying dynamics occurring in such tasks. Compared to related work, MILD generates more accurate trajectories for the controlled agent (robot) when conditioned on the observed agent's (human) trajectory. Notably, MILD can learn directly from camera-based pose estimations to generate trajectories, which we then map to a humanoid robot without the need for any additional training.


翻译:模拟互动动态以生成机器人的模型互动动态,使机器人能够适应和应对人类的动作和意图。从人类-人类互动(HHHI)的演示(LfD)方法中学习人类-人类互动(HHHI)已经显示出有希望的结果,特别是结合代表性学习技术。然而,这种学习HRI的方法不是与高维数据相适应,就是无法准确地适应互动伙伴的通过空位的变化。我们提议多模式互动互动中低调动态动态(MILD),这是一种将深层代表学习和概率机器学习相结合的方法,对于解决两党的物理HRI问题至关重要。我们从演示(LfD)中学习互动动态,使用隐藏的半马尔科夫模型(HSMMM)来模拟在Variational Autencoder(VAE)潜在空间中联合分配互动代理。我们对从HHHI演示中学习HRI的实验性评估显示,MILD在任何以潜在形式展示中有效捕捉到更多的多式联运,使我们能够解析在这种任务中发生的不同动态。(MLD可以直接从相关操作,而由我们所观测到已观察到的模板。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年12月7日
Arxiv
0+阅读 · 2022年12月5日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员