This paper presents a new graph isomorphism invariant, called $\mathfrak{w}$-labeling, that can be used to design a polynomial-time algorithm for solving the graph isomorphism problem for various graph classes. For example, all non-cospectral graph pairs are distinguished by the proposed combinatorial method, furthermore, even non-isomorphic cospectral graphs can be distinguished assuming certain properties of their eigenspaces. We also investigate a refinement of the aforementioned labeling, called $\mathfrak{s}^k$-labeling, which has both theoretical and practical applications. Among others, it can be used to generate graph fingerprints, which uniquely identify all graphs in the considered databases, including all strongly regular graphs on at most 64 nodes and all graphs on at most 12 nodes. It provably identifies all trees and 3-connected planar graphs up to isomorphism, which -- as a byproduct -- gives a new isomorphism algorithm for both graph classes. The practical importance of this fingerprint lies in significantly speeding up searching in graph databases, which is a commonly required task in biological and chemical applications.
翻译:本文展示了一个新的变异性图形, 叫做 $mathfrak{ w} $- 标签, 可用于设计一个多元时间算法, 用于解决图形不同图表类别中的异形问题。 例如, 所有非光谱图形配对都用拟议组合法区分, 此外, 即使非光谱共光谱图形也可以在假设其偏移空间的某些特性的情况下加以区分。 我们还调查上述标签的改进, 称为 $mathfrak{ s ⁇ k$- 标签, 既具有理论用途, 也具有实际用途。 除其他外, 它可以用来生成图形指纹, 以独特的方式识别所考虑的数据库中的所有图形, 包括最多64个节点上的所有强烈常规图形, 以及最多12个节点上的所有图形。 可以肯定地辨别所有树和3个连接的平面图, 直至偏移论, 这 -- 作为副产品 -- 给图形类别提供了一个新的异形算算算法算法。 此指纹的实际重要性在于大幅加速搜索图形数据库中的生物和化学应用, 这是通常需要的任务。