项目名称: 基于原子系综的低噪声量子精密测量

项目编号: No.91436211

项目类型: 重大研究计划

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 荆杰泰

作者单位: 华东师范大学

项目金额: 500万元

中文摘要: 测量是物理学的核心,不断提高测量的精度一直是物理学家的追求,量子精密测量就是要利用量子力学的基本规律寻求更精密的测量手段。光学干涉仪是实现精密测量的有利工具,其发展不断推动着物理学的前进,因此发展高灵敏度的新型光学干涉仪一直备受关注。我们前期实验上研究了非线性光子关联干涉仪,演示了其信噪比较传统的干涉仪有约4dB的量子增强,这一干涉仪目前还有诸如内部损耗、过剩噪声等制约因素的限制,因此在本项目的支持下,我们将利用我们在量子光源的产生、非线性干涉仪实现、冷原子介质产生等方面的实验研究基础,从干涉仪的各个环节入手,主要包括注入量子态的构造、量子态的操作以及干涉仪的探测部分,对干涉仪进行全面详细的理论分析和实验研究,寻找到克服目前干涉仪不理想因素的方法,最终实现量子态构造、量子态高效高保真操控以及新型量子探测技术协同作用下的超高灵敏度的新型量子关联干涉仪。

中文关键词: 精密测量;量子噪声;非线性干涉仪;参量放大器;量子关联

英文摘要: Measurement is the core of physics. To improve the resolution of measurement is always the pursuit of the physicist. Quantum precision measurement is the subject in which physicist improve the measurement resolution using the fundamental role of quantum mechanics. Optical interferometer is the important tool for precision measurement. To construct novel optical interferometer with better sensitivity is always the great concern in modern physicsbecause its development always moves physics forward. We have experimentally demonstrated a nonlinear photon correlation interferometer which has an about 4dB signal to noise ratio enhancement compared to the traditional interferometer. Some factors restricting its further sensitivity improvement include the internal absorption loss, excess noise. Thus in this proposed project, we will comprehensively investigate all aspects of the interferometer including the seeding quantum states, manipulation of the quantum states, and the detection part, and try to find the solutions for overcoming the imperfection of the current nonlinear interferometer. Finally, we will construct a novel quantum correlation interferometer with super sensitivity by combining together the mechanism of quantum state seeding, manipulation and detection.

英文关键词: Precision Measurement;Quantum Noise;Nonlinear Interferometer;Parametric Amplifier;Quantum Correlation

成为VIP会员查看完整内容
0

相关内容

机器学习中原型学习研究进展
专知会员服务
47+阅读 · 2022年1月18日
【2022新书】经典与量子计算导论,392页pdf
专知会员服务
72+阅读 · 2022年1月17日
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
专知会员服务
43+阅读 · 2021年2月8日
量子信息技术研究现状与未来
专知会员服务
41+阅读 · 2020年10月11日
专知会员服务
22+阅读 · 2020年9月14日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
12+阅读 · 2019年4月9日
小贴士
相关VIP内容
机器学习中原型学习研究进展
专知会员服务
47+阅读 · 2022年1月18日
【2022新书】经典与量子计算导论,392页pdf
专知会员服务
72+阅读 · 2022年1月17日
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
专知会员服务
43+阅读 · 2021年2月8日
量子信息技术研究现状与未来
专知会员服务
41+阅读 · 2020年10月11日
专知会员服务
22+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员