A plentitude of applications in scientific computing requires the approximation of mappings between Banach spaces. Recently introduced Fourier Neural Operator (FNO) and Deep Operator Network (DeepONet) can provide this functionality. For both of these neural operators, the input function is sampled on a given grid (uniform for FNO), and the output function is parametrized by a neural network. We argue that this parametrization leads to 1) opaque output that is hard to analyze and 2) systematic bias caused by aliasing errors in the case of FNO. The alternative, advocated in this article, is to use Chebyshev and Fourier series for both domain and codomain. The resulting Spectral Neural Operator (SNO) has transparent output, never suffers from aliasing, and may include many exact (lossless) operations on functions. The functionality is based on well-developed fast, and stable algorithms from spectral methods. The implementation requires only standard numerical linear algebra. Our benchmarks show that for many operators, SNO is superior to FNO and DeepONet.
翻译:科学计算应用的宽度要求Banach 空间之间的绘图近似。 最近引入的 Fourier神经操作员( FNO) 和深操作员网络 (DeepONet) 可以提供此功能。 对于这两个神经操作员来说, 输入功能是在给定的网格上取样的( FNO 统一), 输出功能则由神经网络进行分解 。 我们争辩说, 这种超光速化导致的不透明输出很难分析, 并且2 由FNO 的化名错误造成的系统偏差。 本条所提倡的替代办法是使用Chebyshev 和 Fourier 系列的域和共域。 由此产生的光谱神经操作员( SNO) 具有透明输出, 从未受别名的影响, 并且可能包含许多功能上的精确( 无损) 操作 。 该功能以光谱方法的精密快速和稳定的算法为基础。 执行只需要标准的直线代代数。 我们的基准显示, 许多操作员SNO 高于 FNO 和 DeepONet 。