We show that the Adaptive Greedy algorithm of Golovin and Krause (2011) achieves an approximation bound of $(\ln (Q/\eta)+1)$ for Stochastic Submodular Cover: here $Q$ is the "goal value" and $\eta$ is the smallest non-zero marginal increase in utility deliverable by an item. (For integer-valued utility functions, we show a bound of $H(Q)$, where $H(Q)$ is the $Q^{th}$ Harmonic number.) Although this bound was claimed by Golovin and Krause in the original version of their paper, the proof was later shown to be incorrect by Nan and Saligrama (2017). The subsequent corrected proof of Golovin and Krause (2017) gives a quadratic bound of $(\ln(Q/\eta) + 1)^2$. Other previous bounds for the problem are $56(\ln(Q/\eta) + 1)$, implied by work of Im et al. (2016) on a related problem, and $k(\ln (Q/\eta)+1)$, due to Deshpande et al. (2016) and Hellerstein and Kletenik (2018), where $k$ is the number of states. Our bound generalizes the well-known $(\ln~m + 1)$ approximation bound on the greedy algorithm for the classical Set Cover problem, where $m$ is the size of the ground set.


翻译:我们显示,Golovin和Krause(2011年)的适应性贪婪算法近似(美元/美元(Q/\eta)+1美元),用于软体子模版封面:这里,Q美元是“目标值”,而$/eta美元是可用项目交付的最小的非零边增长。 (对于总价值的公用事业功能,我们显示的是H(Q)美元,其中H(Q)美元是美元/美元+1美元调和数。 )虽然Golovin和Krause在最初版本的纸张中声称这一约束是美元(美元/美元/美元+1美元),但后来,Nan和Saligrama(2017年)则证明这一证明是不正确的。Golovin和Krause(2017年)的更正证据使可用项目交付的最小值(美元/(Q/\eta)+1美元之间的四边框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框框

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月26日
Adaptive Submodular Meta-Learning
Arxiv
0+阅读 · 2021年3月25日
Arxiv
0+阅读 · 2021年3月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员