In this paper we present a new approach for the generation of multi-instrument symbolic music driven by musical emotion. The principal novelty of our approach centres on conditioning a state-of-the-art transformer based on continuous-valued valence and arousal labels. In addition, we provide a new large-scale dataset of symbolic music paired with emotion labels in terms of valence and arousal. We evaluate our approach in a quantitative manner in two ways, first by measuring its note prediction accuracy, and second via a regression task in the valence-arousal plane. Our results demonstrate that our proposed approaches outperform conditioning using control tokens which is representative of the current state of the art.
翻译:在本文中,我们展示了一种由音乐情感驱动的多仪器象征性音乐的新一代生成方法。我们的方法的主要新颖之处在于根据持续价值价值和振奋标签对最新变压器进行调节。此外,我们还提供了一套新型的大规模象征性音乐数据集,用价值和振奋的情感标签配以情感标签。我们从两个方面从数量上评价我们的方法,首先是测量其笔记的预测准确性,其次是在价值-令人振奋的平面上进行回归任务。我们的结果表明,我们提出的方法超越了使用能代表目前艺术状态的控制符号的功能调节。