Achieving consensus via nearest neighbor rules is an important prerequisite for multi-agent networks to accomplish collective tasks. A common assumption in consensus setup is that each agent interacts with all its neighbors. This paper examines whether network functionality and performance can be maintained-and even enhanced-when agents interact only with a subset of their respective (available) neighbors. As shown in the paper, the answer to this inquiry is affirmative. In this direction, we show that by exploring the monotonicity property of the Laplacian eigenvectors, a neighbor selection rule with guaranteed performance enhancements, can be realized for consensus-type networks. For distributed implementation, a quantitative connection between entries of Laplacian eigenvectors and the "relative rate of change" in the state between neighboring agents is further established; this connection facilitates a distributed algorithm for each agent to identify "favorable" neighbors to interact with. Multi-agent networks with and without external influence are examined, as well as extensions to signed networks. This paper underscores the utility of Laplacian eigenvectors in the context of distributed neighbor selection, providing novel insights into distributed data-driven control of multi-agent systems.


翻译:通过近邻规则达成共识是多试剂网络完成集体任务的重要先决条件。 共识设置中的共同假设是每个代理商与其所有邻居互动。 本文审视网络功能和性能是否能够保持, 以及当代理商仅与各自( 可用) 的某个相邻群体互动时, 是否能够增强。 如本文所示, 此项调查的答案是肯定的。 在这方面, 我们显示, 通过探索 Laplacian eigenvetors 的单一性属性, 这是一种有保证性能增强的邻居选择规则, 可以为协商一致型网络实现。 对于分布式实施, 将 Laplaceian 电子源商的条目与邻国之间的“ 相对变化率” 数量连接进一步建立; 这种连接有助于每个代理商确定“ 可行” 邻居与他人互动的分布算法。 检查具有外部影响且不受外部影响的多试剂网络, 以及扩展已签署的网络。 本文强调 Laplecian igentors 在分布式邻居选择背景下的效用, 提供多试剂系统分布式控制的数据驱动的新见解 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员