Intent detection and slot filling are two main tasks for building a spoken language understanding (SLU) system. The two tasks are closely related and the information of one task can be utilized in the other task. Previous studies either model the two tasks separately or only consider the single information flow from intent to slot. None of the prior approaches model the bidirectional connection between the two tasks simultaneously. In this paper, we propose a Co-Interactive Transformer to consider the cross-impact between the two tasks. Instead of adopting the self-attention mechanism in vanilla Transformer, we propose a co-interactive module to consider the cross-impact by building a bidirectional connection between the two related tasks. In addition, the proposed co-interactive module can be stacked to incrementally enhance each other with mutual features. The experimental results on two public datasets (SNIPS and ATIS) show that our model achieves the state-of-the-art performance with considerable improvements (+3.4% and +0.9% on overall acc). Extensive experiments empirically verify that our model successfully captures the mutual interaction knowledge.


翻译:主动探测和空档填充是建立口语理解系统(SLU)的两大主要任务。这两项任务密切相关,一项任务的信息可以用于另一项任务。以前的研究要么将这两项任务分开,要么只考虑从意图到空档的单一信息流动。先前的办法没有一种模式同时将两项任务之间的双向联系作为双向联系的模型。在本文件中,我们提议了一个共同互动变换器,以考虑这两项任务之间的交叉影响。我们提议了一个共同互动模块,而不是在香草变换器中采用自留机制,而是通过在两项相关任务之间建立双向联系来考虑交叉影响。此外,拟议的共同互动模块可以叠叠,以相互增强彼此的特性。两个公共数据集(SNIPS和ATIS)的实验结果显示,我们的模型在取得最新业绩的同时取得了相当大的改进(+3.4%和在总体ACC上+0.9%)。我们进行了广泛的实验,以经验验证我们的模型成功捕捉到相互互动知识。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【WWW2021】合作记忆网络的个性化任务导向对话系统
专知会员服务
15+阅读 · 2021年2月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
自适应注意力机制在Image Caption中的应用
PaperWeekly
10+阅读 · 2018年5月10日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
Arxiv
12+阅读 · 2019年2月28日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
3+阅读 · 2017年11月21日
VIP会员
相关VIP内容
【WWW2021】合作记忆网络的个性化任务导向对话系统
专知会员服务
15+阅读 · 2021年2月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
自适应注意力机制在Image Caption中的应用
PaperWeekly
10+阅读 · 2018年5月10日
Faster R-CNN
数据挖掘入门与实战
4+阅读 · 2018年4月20日
Top
微信扫码咨询专知VIP会员