Referring Expression Comprehension (REC) is an emerging research spot in computer vision, which refers to detecting the target region in an image given an text description. Most existing REC methods follow a multi-stage pipeline, which are computationally expensive and greatly limit the application of REC. In this paper, we propose a one-stage model towards real-time REC, termed Real-time Global Inference Network (RealGIN). RealGIN addresses the diversity and complexity issues in REC with two innovative designs: the Adaptive Feature Selection (AFS) and the Global Attentive ReAsoNing unit (GARAN). AFS adaptively fuses features at different semantic levels to handle the varying content of expressions. GARAN uses the textual feature as a pivot to collect expression-related visual information from all regions, and thenselectively diffuse such information back to all regions, which provides sufficient context for modeling the complex linguistic conditions in expressions. On five benchmark datasets, i.e., RefCOCO, RefCOCO+, RefCOCOg, ReferIt and Flickr30k, the proposed RealGIN outperforms most prior works and achieves very competitive performances against the most advanced method, i.e., MAttNet. Most importantly, under the same hardware, RealGIN can boost the processing speed by about 10 times over the existing methods.


翻译:表示宽度(REC)是计算机愿景中一个新兴的研究点,它是指在给文字描述的图像中探测目标区域,现有大多数REC方法都采用多阶段管道,这些管道计算费用昂贵,极大地限制了REC的应用。在本文件中,我们建议了实时REC的一阶段模型,称为实时全球引文网络(RealGIN)。ReGIN处理REC中的多样性和复杂问题,有两种创新设计:适应性特征选择(AFS)和全球惯性再生单元(GARAN)。AFS在不同语义层次上适应性地结合了不同语义的特征,以处理表达内容的不同内容。 GARAN使用文字特征作为从所有区域收集与表达相关的视觉信息的要点,然后将这些信息有选择性地传播到所有区域,为模拟表达中的复杂语言条件提供了充分的背景。关于五个基准数据集,即RefCOCOCO、RefCO+、RefCOCOg、RefCOGCOg、RefIT和FL30k 等不同语系的功能,在最先进前的操作中实现了最先进的实GRIIN和FLFIG 。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
3+阅读 · 2018年11月29日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员