A separable covariance model for a random matrix provides a parsimonious description of the covariances among the rows and among the columns of the matrix, and permits likelihood-based inference with a very small sample size. However, in many applications the assumption of exact separability is unlikely to be met, and data analysis with a separable model may overlook or misrepresent important dependence patterns in the data. In this article, we propose a compromise between separable and unstructured covariance estimation. We show how the set of covariance matrices may be uniquely parametrized in terms of the set of separable covariance matrices and a complementary set of "core" covariance matrices, where the core of a separable covariance matrix is the identity matrix. This parametrization defines a Kronecker-core decomposition of a covariance matrix. By shrinking the core of the sample covariance matrix with an empirical Bayes procedure, we obtain an estimator that can adapt to the degree of separability of the population covariance matrix.
翻译:随机矩阵的可分离共变模型对各行之间和矩阵各列之间的共变情况作了模糊的描述,并允许以非常小的样本大小进行基于可能性的推论。然而,在许多应用中,不可能满足精确分离假设,而使用可分离模型进行的数据分析可能会忽略数据中的重要依赖模式或歪曲数据中的重要依赖模式。在本条中,我们提议在可分离和无结构的共变估计之间达成妥协。我们表明,从一套可分离共变矩阵和一套可互补的“核心”共变矩阵和一套“核心”共变矩阵中,一套“核心”共变矩阵的核心是身份矩阵。这种配方化定义了共变矩阵的Kronecker-Core共变组合。通过用经验性海湾程序缩小样本共变矩阵的核心,我们获得了一个可适应人口易变矩阵差异程度的估算数据。