Deployed machine learning (ML) models often encounter new user data that differs from their training data. Therefore, estimating how well a given model might perform on the new data is an important step toward reliable ML applications. This is very challenging, however, as the data distribution can change in flexible ways, and we may not have any labels on the new data, which is often the case in monitoring settings. In this paper, we propose a new distribution shift model, Sparse Joint Shift (SJS), which considers the joint shift of both labels and a few features. This unifies and generalizes several existing shift models including label shift and sparse covariate shift, where only marginal feature or label distribution shifts are considered. We describe mathematical conditions under which SJS is identifiable. We further propose SEES, an algorithmic framework to characterize the distribution shift under SJS and to estimate a model's performance on new data without any labels. We conduct extensive experiments on several real-world datasets with various ML models. Across different datasets and distribution shifts, SEES achieves significant (up to an order of magnitude) shift estimation error improvements over existing approaches.
翻译:部署的机器学习模型经常遇到不同于其培训数据的新用户数据。 因此, 估计一个特定模型在新数据上可能表现的好, 是向可靠的 ML 应用程序迈出的重要一步。 然而,这非常具有挑战性, 因为数据分布可以灵活地变化, 我们可能没有新数据上的任何标签, 这在监测设置中通常是这样。 在本文中, 我们提出一个新的分布转移模型, 即 Sparse 联合 Shift (SJS), 它将考虑两个标签和几个特性的联合转移。 这统一和概括了几个现有的转移模型, 包括标签的转移和零星的共变换, 只有边际特性或标签分布变化才被考虑。 我们描述了SJS可以识别的数学条件。 我们还建议, SES, 一个算法框架, 来描述SJS 的分布变化, 并且在没有标签的情况下估算出新数据模型的性能。 我们用不同的 ML 模型对几个真实世界数据集进行广泛的实验。 在不同的数据集和分布变化中, SEES 取得了显著的( 至一定的幅度) 改变估计错误改进。