In this paper, we present a Robust Completed Local Binary Pattern (RCLBP) framework for a surface defect detection task. Our approach uses a combination of Non-Local (NL) means filter with wavelet thresholding and Completed Local Binary Pattern (CLBP) to extract robust features which are fed into classifiers for surface defects detection. This paper combines three components: A denoising technique based on Non-Local (NL) means filter with wavelet thresholding is established to denoise the noisy image while preserving the textures and edges. Second, discriminative features are extracted using the CLBP technique. Finally, the discriminative features are fed into the classifiers to build the detection model and evaluate the performance of the proposed framework. The performance of the defect detection models are evaluated using a real-world steel surface defect database from Northeastern University (NEU). Experimental results demonstrate that the proposed approach RCLBP is noise robust and can be applied for surface defect detection under varying conditions of intra-class and inter-class changes and with illumination changes.
翻译:在本文中,我们为表面缺陷检测任务提出了一个结实的局部二元模式框架。 我们的方法结合了非本地(NL), 意指用波盘阈值过滤和完成本地二元模式(CLBP) 提取强固功能, 输入分类器用于表面缺陷检测。 本文包含三个组成部分: 基于非本地(NL) 的拆卸技术, 以波盘阈值过滤法, 用来在保存纹理和边缘的同时遮蔽噪音的图像。 其次, 利用 CLBP 技术提取有区别的特征。 最后, 向分类器输入有区别的特征, 以构建探测模型并评估拟议框架的绩效。 缺陷检测模型的性能是使用东北大学(NEU)的实世钢表面缺陷数据库进行评估的。 实验结果表明, 拟议的CRCLBP 方法是稳健的, 可用于在各种内部和阶级间变化条件下进行地表缺陷检测, 以及有污染的变化 。