In this paper, we present a Robust Completed Local Binary Pattern (RCLBP) framework for a surface defect detection task. Our approach uses a combination of Non-Local (NL) means filter with wavelet thresholding and Completed Local Binary Pattern (CLBP) to extract robust features which are fed into classifiers for surface defects detection. This paper combines three components: A denoising technique based on Non-Local (NL) means filter with wavelet thresholding is established to denoise the noisy image while preserving the textures and edges. Second, discriminative features are extracted using the CLBP technique. Finally, the discriminative features are fed into the classifiers to build the detection model and evaluate the performance of the proposed framework. The performance of the defect detection models are evaluated using a real-world steel surface defect database from Northeastern University (NEU). Experimental results demonstrate that the proposed approach RCLBP is noise robust and can be applied for surface defect detection under varying conditions of intra-class and inter-class changes and with illumination changes.


翻译:在本文中,我们为表面缺陷检测任务提出了一个结实的局部二元模式框架。 我们的方法结合了非本地(NL), 意指用波盘阈值过滤和完成本地二元模式(CLBP) 提取强固功能, 输入分类器用于表面缺陷检测。 本文包含三个组成部分: 基于非本地(NL) 的拆卸技术, 以波盘阈值过滤法, 用来在保存纹理和边缘的同时遮蔽噪音的图像。 其次, 利用 CLBP 技术提取有区别的特征。 最后, 向分类器输入有区别的特征, 以构建探测模型并评估拟议框架的绩效。 缺陷检测模型的性能是使用东北大学(NEU)的实世钢表面缺陷数据库进行评估的。 实验结果表明, 拟议的CRCLBP 方法是稳健的, 可用于在各种内部和阶级间变化条件下进行地表缺陷检测, 以及有污染的变化 。

0
下载
关闭预览

相关内容

UIUC韩家炜:从海量非结构化文本中挖掘结构化知识
专知会员服务
97+阅读 · 2021年12月30日
专知会员服务
33+阅读 · 2021年9月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2019年11月8日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Arxiv
9+阅读 · 2021年3月3日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
11+阅读 · 2019年4月15日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关VIP内容
UIUC韩家炜:从海量非结构化文本中挖掘结构化知识
专知会员服务
97+阅读 · 2021年12月30日
专知会员服务
33+阅读 · 2021年9月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
4+阅读 · 2019年11月8日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Top
微信扫码咨询专知VIP会员