Among existing uncertainty estimation approaches, Dirichlet Prior Network (DPN) distinctly models different predictive uncertainty types. However, for in-domain examples with high data uncertainties among multiple classes, even a DPN model often produces indistinguishable representations from the out-of-distribution (OOD) examples, compromising their OOD detection performance. We address this shortcoming by proposing a novel loss function for DPN to maximize the \textit{representation gap} between in-domain and OOD examples. Experimental results demonstrate that our proposed approach consistently improves OOD detection performance.
翻译:在现有的不确定性估算方法中,Drichlet Prient Network(DPN)明显地模拟了不同的预测性不确定性类型,然而,对于多类之间数据不确定性高的内部实例,即使是DPN模型也往往产生与分配外(OOOD)示例无法区分的表示方式,损害其OOD检测性能。我们为DPN提出一个新的损失函数,以尽量扩大DPN与OOOD实例之间的\textit{代表性差距,以解决这一缺陷。实验结果表明,我们提出的方法一贯改进OOD的检测性能。