This article shows that achieving capacity region of a 2-users weak Gaussian Interference Channel (GIC) is equivalent to enlarging the core in a nested set of Polymatroids (each equivalent to capacity region of a multiple-access channel) through maximizing a minimum rate, then projecting along its orthogonal span and continuing recursively. This formulation relies on defining dummy private messages to capture the effect of interference in GIC. It follows that relying on independent Gaussian random code-books is optimum, and the corresponding solution corresponds to achieving the boundary in HK constraints.


翻译:本文指出,获得2个用户薄弱高斯干涉频道(GIC)的能力区域,相当于通过最大限度地提高最低速率,然后沿着其正方形间距投射并连续循环,扩大嵌套的一组多孔机器人(均相当于多接入频道的能力区域)的核心核心部分。这一提法依靠界定假的私人信息来捕捉干扰高斯干涉频道的影响。 因此,依靠独立的高斯随机代码是最佳的,相应的解决方案与在香港的制约因素中达到的界限相对应。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
53+阅读 · 2020年9月7日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年5月31日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年3月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年5月31日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员