时间序列无处不在,在每个行业,从能源到地球科学等。因此,解决这些问题至关重要;在大多数情况下(特别是在实际项目中),时间序列数据集包含大量缺失的数据点,这些数据点与预测的输出高度相关。本文对现有的方法进行了回顾,然后对基于门控循环单元的GRU-D(基于门控循环单元)处理缺失点的方法进行了详细的说明

成为VIP会员查看完整内容
21

相关内容

递归神经网络(RNN)是神经网络的一种。单纯的RNN因为无法处理随着递归,权重指数级爆炸或梯度消失问题,难以捕捉长期时间关联;而结合不同的LSTM可以很好解决这个问题。 时间递归神经网络可以描述动态时间行为,因为和前馈神经网络(feedforward neural network)接受较特定结构的输入不同,RNN将状态在自身网络中循环传递,因此可以接受更广泛的时间序列结构输入。手写识别是最早成功利用RNN的研究结果。
时间序列计量经济学
专知会员服务
48+阅读 · 2022年4月8日
斯坦福《序列处理的深度学习架构》概述,31页pdf
专知会员服务
56+阅读 · 2021年1月3日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
167+阅读 · 2019年12月4日
LSTM还没「死」!
PaperWeekly
1+阅读 · 2022年3月31日
干货 | 循环神经网络(RNN)和LSTM初学者指南
THU数据派
15+阅读 · 2019年1月25日
三次简化一张图:一招理解LSTM/GRU门控机制
机器之心
15+阅读 · 2018年12月18日
可视化循环神经网络的注意力机制
论智
22+阅读 · 2018年9月23日
学界 | 综述论文:四大类深度迁移学习
机器之心
17+阅读 · 2018年9月15日
基于LSTM深层神经网络的时间序列预测
论智
21+阅读 · 2018年9月4日
基于 Keras 用 LSTM 网络做时间序列预测
R语言中文社区
21+阅读 · 2018年8月6日
时间序列深度学习:状态 LSTM 模型预测太阳黑子(上)
R语言中文社区
19+阅读 · 2018年6月15日
深度学习循环神经网络详解
七月在线实验室
16+阅读 · 2018年5月28日
教程 | 基于Keras的LSTM多变量时间序列预测
机器之心
20+阅读 · 2017年10月30日
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
3+阅读 · 2022年4月18日
Arxiv
21+阅读 · 2021年12月31日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
19+阅读 · 2018年10月25日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
25+阅读 · 2018年1月24日
Arxiv
23+阅读 · 2017年3月9日
VIP会员
相关资讯
LSTM还没「死」!
PaperWeekly
1+阅读 · 2022年3月31日
干货 | 循环神经网络(RNN)和LSTM初学者指南
THU数据派
15+阅读 · 2019年1月25日
三次简化一张图:一招理解LSTM/GRU门控机制
机器之心
15+阅读 · 2018年12月18日
可视化循环神经网络的注意力机制
论智
22+阅读 · 2018年9月23日
学界 | 综述论文:四大类深度迁移学习
机器之心
17+阅读 · 2018年9月15日
基于LSTM深层神经网络的时间序列预测
论智
21+阅读 · 2018年9月4日
基于 Keras 用 LSTM 网络做时间序列预测
R语言中文社区
21+阅读 · 2018年8月6日
时间序列深度学习:状态 LSTM 模型预测太阳黑子(上)
R语言中文社区
19+阅读 · 2018年6月15日
深度学习循环神经网络详解
七月在线实验室
16+阅读 · 2018年5月28日
教程 | 基于Keras的LSTM多变量时间序列预测
机器之心
20+阅读 · 2017年10月30日
相关基金
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
相关论文
Arxiv
3+阅读 · 2022年4月18日
Arxiv
21+阅读 · 2021年12月31日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
19+阅读 · 2018年10月25日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
25+阅读 · 2018年1月24日
Arxiv
23+阅读 · 2017年3月9日
微信扫码咨询专知VIP会员