A novel model called error loss network (ELN) is proposed to build an error loss function for supervised learning. The ELN is in structure similar to a radial basis function (RBF) neural network, but its input is an error sample and output is a loss corresponding to that error sample. That means the nonlinear input-output mapper of ELN creates an error loss function. The proposed ELN provides a unified model for a large class of error loss functions, which includes some information theoretic learning (ITL) loss functions as special cases. The activation function, weight parameters and network size of the ELN can be predetermined or learned from the error samples. On this basis, we propose a new machine learning paradigm where the learning process is divided into two stages: first, learning a loss function using an ELN; second, using the learned loss function to continue to perform the learning. Experimental results are presented to demonstrate the desirable performance of the new method.
翻译:建议建立一个名为错误损失网络的新模式(ELN), 用于为受监督的学习构建一个错误损失功能。 ELN 的结构类似于一个辐射基函数神经网络, 但输入是一个错误样本, 输出是一个与错误样本相应的损失。 这意味着 ELN 的非线性输入- 输出映射器产生一个错误损失功能。 拟议的ELN 为大类错误损失功能提供了一个统一模型, 其中包括一些信息理论学习( ITL) 损失函数, 作为特例。 ELN 的激活功能、 重量参数和网络大小可以预设, 也可以从错误样本中学习。 在此基础上, 我们提出一个新的机器学习模式, 学习过程可以分为两个阶段: 第一, 使用 ELN 学习损失函数; 第二, 使用学习过的丢失函数继续学习。 实验结果将演示新方法的可取性表现 。