Deep-learning models for language generation tasks tend to produce repetitive output. Various methods have been proposed to encourage lexical diversity during decoding, but this often comes at a cost to the perceived fluency and adequacy of the output. In this work, we propose to ameliorate this cost by using an Imitation Learning approach to explore the level of diversity that a language generation model can reliably produce. Specifically, we augment the decoding process with a meta-classifier trained to distinguish which words at any given timestep will lead to high-quality output. We focus our experiments on concept-to-text generation where models are sensitive to the inclusion of irrelevant words due to the strict relation between input and output. Our analysis shows that previous methods for diversity underperform in this setting, while human evaluation suggests that our proposed method achieves a high level of diversity with minimal effect to the output's fluency and adequacy.


翻译:语言生成任务的深层次学习模式往往会产生重复产出。 已经提出各种方法鼓励在解码过程中的字典多样性,但这往往以产出的流畅和充分性为代价。 在这项工作中,我们提议通过使用模拟学习方法来提高这一成本,以探索语言生成模式能够可靠地产生的多样性水平。 具体地说,我们用一个经过培训的元分类器来强化解码进程,以区分在任何特定时间步骤中哪些词将导致高质量的产出。 我们把实验重点放在概念到文字生成上,因为由于输入和产出之间的严格关系,模型对纳入无关的字句十分敏感。 我们的分析表明,以前关于多样性的方法在此环境中表现不佳,而人类评价则表明,我们拟议的方法实现了高度的多样性,对产出的流畅和充分性影响最小。

0
下载
关闭预览

相关内容

专知会员服务
43+阅读 · 2021年4月23日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【论文推荐】文本摘要简述
专知会员服务
69+阅读 · 2020年7月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2017年12月29日
VIP会员
相关VIP内容
专知会员服务
43+阅读 · 2021年4月23日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【论文推荐】文本摘要简述
专知会员服务
69+阅读 · 2020年7月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员