Factor and sparse models are two widely used methods to impose a low-dimensional structure in high-dimension. They are seemingly mutually exclusive. In this paper, we propose a simple lifting method that combines the merits of these two models in a supervised learning methodology that allows to efficiently explore all the information in high-dimensional datasets. The method is based on a flexible model for panel data, called factor-augmented regression model with both observable, latent common factors, as well as idiosyncratic components as high-dimensional covariate variables. This model not only includes both factor regression and sparse regression as specific models but also significantly weakens the cross-sectional dependence and hence facilitates model selection and interpretability. The methodology consists of three steps. At each step, the remaining cross-section dependence can be inferred by a novel test for covariance structure in high-dimensions. We developed asymptotic theory for the factor-augmented sparse regression model and demonstrated the validity of the multiplier bootstrap for testing high-dimensional covariance structure. This is further extended to testing high-dimensional partial covariance structures. The theory and methods are further supported by an extensive simulation study and applications to the construction of a partial covariance network of the financial returns and a prediction exercise for a large panel of macroeconomic time series from FRED-MD database.


翻译:系数和稀少模型是将低维结构强加于高维共变体的两个广泛使用的方法。 它们似乎相互排斥。 在本文中,我们提出一个简单的提升方法,将这两个模型的优点结合到一个监督的学习方法中,以便能够有效地探索高维数据集中的所有信息。该方法基于一个灵活的小组数据模型,称为因子增强回归模型,既包括可见的、潜在的共同因素,也包括作为高维共变体变量的特异性组合元件。该模型不仅包括作为具体模型的因素回归和稀释回归,而且还大大削弱了跨部门依赖性,从而便利了模型的选择和可解释性。该方法由三个步骤组成。在每一个步骤中,其余的跨部门依赖性都可以通过高维数据集的共变结构的新颖测试来推断。我们为因子放大的微弱共变数模型开发了零度理论,并展示了用于测试高维异结构的倍化靴壳的有效性。这进一步扩展了测试高维度部分共变数结构,从而降低了跨部门依赖性,从而便利了模式的选取模式的模型选择和可解释性模型。 在每一步中,一个大型的宏观经济变数数据库应用中,进一步支持了一种广泛的宏观经济模型的理论和共变数分析模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
3D Face Modeling from Diverse Raw Scan Data
Arxiv
5+阅读 · 2019年2月13日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员