Missing data is frequently encountered in practice. Propensity score estimation is a popular tool for handling such missingness. The propensity score is often developed using the model for the response probability, which can be subject to model misspecification. In this paper, we consider an alternative approach of estimating the inverse of the propensity scores using the density ratio function. By partitioning the sample into two groups based on the response status of the elements, we can apply the density ratio function estimation method and obtain the inverse propensity scores for nonresponse adjustment. Density ratio estimation can be obtained by applying the so-called maximum entropy method, which uses the Kullback-Leibler divergence measure under calibration constraints. By including the covariates for the outcome regression models only into the density ratio model, we can achieve efficient propensity score estimation. We further extend the proposed approach to the multivariate missing case. Some limited simulation studies are presented to compare with the existing methods.


翻译:在实际中经常遇到缺失的数据。 Probensity 评分估计是处理这种缺失的一个流行工具。 偏差评分通常使用响应概率模型来制定, 可能受模型错误区分。 在本文中, 我们考虑另一种方法, 利用密度比率函数来估计偏差分的反差。 通过根据元素的响应状态将样本分成两组, 我们可以应用密度比率估计函数法, 并获得不响应调整的反偏差分。 密度比估计可以通过应用所谓的最大倍增率方法获得, 这种方法在校准限制下使用 Kullback- Leibelter 差异度测量法。 通过将结果回归模型的共变数只纳入密度比率模型, 我们可以实现高效的偏差估计。 我们进一步将拟议方法扩展至多变量缺失案例。 一些有限的模拟研究可以与现有方法进行比较。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CTR预估专栏 | 一文搞懂阿里Deep Interest Network
AI前线
14+阅读 · 2018年7月20日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
8+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CTR预估专栏 | 一文搞懂阿里Deep Interest Network
AI前线
14+阅读 · 2018年7月20日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
8+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员