The analysis of clinical questionnaire data comes with many inherent challenges. These challenges include the handling of data with missing fields, as well as the overall interpretation of a dataset with many fields of different scales and forms. While numerous methods have been developed to address these challenges, they are often not robust, statistically sound, or easily interpretable. Here, we propose a latent factor modeling framework that extends the principal component analysis for both categorical and quantitative data with missing elements. The model simultaneously provides the principal components (basis) and each patients' projections on these bases in a latent space. We show an application of our modeling framework through Irritable Bowel Syndrome (IBS) symptoms, where we find correlations between these projections and other standardized patient symptom scales. This latent factor model can be easily applied to different clinical questionnaire datasets for clustering analysis and interpretable inference.


翻译:对临床问卷数据的分析面临许多固有的挑战,这些挑战包括处理缺少领域的数据,以及全面解释具有不同规模和形式的许多领域的数据集。虽然已经制定了许多方法来应对这些挑战,但这些方法往往不健全,统计上不健全,或者不易解释。在这里,我们提出了一个潜在要素模型框架,扩展含有缺失元素的绝对数据和定量数据的主要组成部分分析。模型同时提供了主要组成部分(基数)和每个病人在潜伏空间这些基数上的预测。我们通过渗透性鲍埃尔综合症(IBS)症状展示了我们模型框架的应用,我们发现这些预测与其他标准化患者症状尺度之间的相互关系。这一潜在要素模型很容易用于不同的临床问卷数据集进行集群分析和解释。

0
下载
关闭预览

相关内容

【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2021年6月17日
VIP会员
相关资讯
计算机经典算法回顾与展望——机器学习与数据挖掘
中国计算机学会
5+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员