We present a deep imitation learning framework for robotic bimanual manipulation in a continuous state-action space. Imitation learning has been effectively utilized in mimicking bimanual manipulation movements, but generalizing the movement to objects in different locations has not been explored. We hypothesize that to precisely generalize the learned behavior relative to an object's location requires modeling relational information in the environment. To achieve this, we designed a method that (i) uses a multi-model framework to decomposes complex dynamics into elemental movement primitives, and (ii) parameterizes each primitive using a recurrent graph neural network to capture interactions. Our model is a deep, hierarchical, modular architecture with a high-level planner that learns to compose primitives sequentially and a low-level controller which integrates primitive dynamics modules and inverse kinematics control. We demonstrate the effectiveness using several simulated bimanual robotic manipulation tasks. Compared to models based on previous imitation learning studies, our model generalizes better and achieves higher success rates in the simulated tasks.
翻译:我们为连续状态动作空间的机器人双体操纵提供了一个深度模拟学习框架。 在模仿双体操纵运动中, 模拟学习被有效使用, 但是没有探索将运动推广到不同地点的物体。 我们假设, 要精确地概括相对于物体位置的学习行为, 就需要在环境中建模关系信息。 为此, 我们设计了一个方法, (一) 使用一个多模型框架将复杂的动态分解成元素运动原始体, (二) 使用一个经常性的图形神经网络将每个原始体的参数化, 以捕捉互动。 我们的模型是一个深层次的、 等级的、 模块化的结构, 拥有一个高层次的规划器, 学会按顺序构造原始体, 并且是一个低层次的控制器, 将原始动力模块和反动感控制整合在一起。 我们用几种模拟的模拟双体机器人操纵任务展示了效果。 与先前的模拟学习研究模型相比, 我们的模型集成效果更好, 在模拟任务中取得更高的成功率 。