Visual search is a ubiquitous and often challenging daily task, exemplified by looking for the car keys at home or a friend in a crowd. An intriguing property of some classical search tasks is an asymmetry such that finding a target A among distractors B can be easier than finding B among A. To elucidate the mechanisms responsible for asymmetry in visual search, we propose a computational model that takes a target and a search image as inputs and produces a sequence of eye movements until the target is found. The model integrates eccentricity-dependent visual recognition with target-dependent top-down cues. We compared the model against human behavior in six paradigmatic search tasks that show asymmetry in humans. Without prior exposure to the stimuli or task-specific training, the model provides a plausible mechanism for search asymmetry. We hypothesized that the polarity of search asymmetry arises from experience with the natural environment. We tested this hypothesis by training the model on augmented versions of ImageNet where the biases of natural images were either removed or reversed. The polarity of search asymmetry disappeared or was altered depending on the training protocol. This study highlights how classical perceptual properties can emerge in neural network models, without the need for task-specific training, but rather as a consequence of the statistical properties of the developmental diet fed to the model. All source code and data are publicly available at https://github.com/kreimanlab/VisualSearchAsymmetry.
翻译:视觉搜索是一种无处不在且往往具有挑战性的日常任务,例如在家里寻找汽车钥匙或人群中的朋友。一些古典搜索任务的一个令人感兴趣的属性是不对称的,因此在分流器B中找到目标A可能比在A中找到目标B容易得多。为了阐明对视觉搜索不对称负责的机制,我们提议了一个计算模型,将一个目标和搜索图像作为投入,并生成一个视觉运动序列,直到找到目标。模型将偏心偏差偏差的视觉识别与目标依赖的自上而下的提示结合起来。我们比较了在显示人类不对称的六种模式搜索任务中针对人类行为的模型。在不事先接触刺激或任务特定培训的情况下,该模型为寻找不对称提供了一种貌似合理的机制。我们假设搜索不对称的极性产生于自然环境的经验。我们测试了这一假设,在图像网络的扩大版本中,自然图像的偏差要么被删除,要么被颠倒。搜索不对称的极性或根据培训协议进行了改变。我们比较了人类行为模式的偏差性,但根据培训协议,这一研究突显了典型的直视/直观性质特性,A 并且将所有可用的数据属性作为可提供给数据库数据库数据库中的数据属性,而成为了数据库。