Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust losses, however, inevitably involve hyperparameters to be tuned for different datasets with noisy labels, manually or heuristically through cross validation, which makes them fairly hard to be generally applied in practice. Existing robust loss methods usually assume that all training samples share common hyperparameters, which are independent of instances. This limits the ability of these methods on distinguishing individual noise properties of different samples, making them hardly adapt to different noise structures. To address above issues, we propose to assemble robust loss with instance-dependent hyperparameters to improve their noise-tolerance with theoretical guarantee. To achieve setting such instance-dependent hyperparameters for robust loss, we propose a meta-learning method capable of adaptively learning a hyperparameter prediction function, called Noise-Aware-Robust-Loss-Adjuster (NARL-Adjuster). Specifically, through mutual amelioration between hyperparameter prediction function and classifier parameters in our method, both of them can be simultaneously finely ameliorated and coordinated to attain solutions with good generalization capability. Four kinds of SOTA robust losses are attempted to be integrated with our algorithm, and experiments substantiate the general availability and effectiveness of the proposed method in both its noise tolerance and generalization performance. Meanwhile, the explicit parameterized structure makes the meta-learned prediction function capable of being readily transferrable and plug-and-play to unseen datasets with noisy labels. Specifically, we transfer our meta-learned NARL-Adjuster to unseen tasks, including several real noisy datasets, and achieve better performance compared with conventional hyperparameter tuning strategy.


翻译:强力损失最小化是处理噪音标签上强力学习问题的重要战略。然而,当前的强力损失不可避免地涉及超参数,需要通过交叉校验来调整带有噪音标签的不同数据集,人工或超光度,这使得它们很难在实际中普遍应用。现有的强力损失方法通常假定,所有培训样本都拥有共同的超参数,这些参数与实例无关。这限制了这些方法区分不同样品个体噪声特性的能力,使它们很难适应不同的噪音结构。为了解决上述问题,我们提议用依赖实例的超参数来收集强的损失,以提高它们以理论保证的方式对噪音容忍度。要建立这种以实例为基础的超参数,我们建议一种能够适应性能的元学习方法,学习超参数预测功能,称为Nosise-Aware-Robust-Lost-Adjustarder(NARL-Adjustarder) 。具体地说,通过透力预测和分解(我们方法)的超直线性能和直线性能参数,它们可以同时改进和协调,同时改进和协调,用理论保证它们的噪音耐动超声度超度超度超光度超光度超光度超光度超光度超光度超光度超光度超光值的超光值的超光值计算, 和高能实验性能 和实验性能 运行法 运行法 运行法 实现。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月9日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员