We study the problem of agnostic learning under the Gaussian distribution. We develop a method for finding hard families of examples for a wide class of problems by using LP duality. For Boolean-valued concept classes, we show that the $L^1$-regression algorithm is essentially best possible, and therefore that the computational difficulty of agnostically learning a concept class is closely related to the polynomial degree required to approximate any function from the class in $L^1$-norm. Using this characterization along with additional analytic tools, we obtain optimal SQ lower bounds for agnostically learning linear threshold functions and the first non-trivial SQ lower bounds for polynomial threshold functions and intersections of halfspaces. We also develop an analogous theory for agnostically learning real-valued functions, and as an application prove near-optimal SQ lower bounds for agnostically learning ReLUs and sigmoids.
翻译:我们研究了高斯分布下的不可知性学习问题。 我们开发了一种方法,通过使用 LP 双重性, 找到一大类问题实例的硬家庭样板。 对于布利安价值的概念类, 我们显示, $L $1$的递减算法基本上是最佳的, 因此, 抽象学习概念类的计算困难与从类中以$L $1$- norm 来接近任何函数所需的多元度密切相关。 使用这种定性以及额外的分析工具, 我们获得最佳的 SQ 下限, 用于非学性学习线性线性函数和第一个非三角 SQ 半空格函数和交叉点的非三角 SQ 下界。 我们还开发了类似理论, 用于非学性学习真正价值函数, 并且作为近于最佳 SQ Q 下界的应用程序证明, 用于进行神学性学习 ReLUs 和 Sigmimods 。