We present a deep learning model for finding human-understandable connections between input features. Our approach uses a parameterized, differentiable activation function, based on the theoretical background of nilpotent fuzzy logic and multi-criteria decision-making (MCDM). The learnable parameter has a semantic meaning indicating the level of compensation between input features. The neural network determines the parameters using gradient descent to find human-understandable relationships between input features. We demonstrate the utility and effectiveness of the model by successfully applying it to classification problems from the UCI Machine Learning Repository.
翻译:我们提出了一个深层次的学习模式,以寻找输入特征之间可以理解的人类联系。我们的方法使用一个参数化的、可区别的激活功能,基于无能力模糊逻辑和多标准决策(MCDM)的理论背景。学习的参数具有语义含义,表明输入特征之间的补偿水平。神经网络确定参数,使用梯度下降来寻找输入特征之间可以理解的关系。我们通过成功地将模型应用于UCI机器学习存储库的分类问题来证明模型的实用性和有效性。